Design of multishell sampling schemes with uniform coverage in diffusion MRI.

نویسندگان

  • Emmanuel Caruyer
  • Christophe Lenglet
  • Guillermo Sapiro
  • Rachid Deriche
چکیده

PURPOSE In diffusion MRI, a technique known as diffusion spectrum imaging reconstructs the propagator with a discrete Fourier transform, from a Cartesian sampling of the diffusion signal. Alternatively, it is possible to directly reconstruct the orientation distribution function in q-ball imaging, providing so-called high angular resolution diffusion imaging. In between these two techniques, acquisitions on several spheres in q-space offer an interesting trade-off between the angular resolution and the radial information gathered in diffusion MRI. A careful design is central in the success of multishell acquisition and reconstruction techniques. METHODS The design of acquisition in multishell is still an open and active field of research, however. In this work, we provide a general method to design multishell acquisition with uniform angular coverage. This method is based on a generalization of electrostatic repulsion to multishell. RESULTS We evaluate the impact of our method using simulations, on the angular resolution in one and two bundles of fiber configurations. Compared to more commonly used radial sampling, we show that our method improves the angular resolution, as well as fiber crossing discrimination. DISCUSSION We propose a novel method to design sampling schemes with optimal angular coverage and show the positive impact on angular resolution in diffusion MRI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increasing the Analytical Accessibility of Multishell and Diffusion Spectrum Imaging Data Using Generalized Q-Sampling Conversion

Many diffusion MRI researchers, including the Human Connectome Project (HCP), acquire data using multishell (e.g., WU-Minn consortium) and diffusion spectrum imaging (DSI) schemes (e.g., USC-Harvard consortium). However, these data sets are not readily accessible to high angular resolution diffusion imaging (HARDI) analysis methods that are popular in connectomics analysis. Here we introduce a ...

متن کامل

Optimal Design of Multiple Q-shells experiments for Diffusion MRI

Recent advances in diffusion MRI make use of the diffusion signal sampled on the whole Q-space, rather than on a single sphere. While much effort has been done to design uniform sampling schemes for single shell experiment, it is yet not clear how to build a strategy to sample the diffusion signal in the whole Fourier domain. In this article, we propose a method to generate acquisition schemes ...

متن کامل

Designing Single- and Multiple-Shell Sampling Schemes for Diffusion MRI Using Spherical Code

In diffusion MRI (dMRI), determining an appropriate sampling scheme is crucial for acquiring the maximal amount of information for data reconstruction and analysis using the minimal amount of time. For single-shell acquisition, uniform sampling without directional preference is usually favored. To achieve this, a commonly used approach is the Electrostatic Energy Minimization (EEM) method intro...

متن کامل

Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system

Mapping complex crossing fibers using diffusion MRI techniques requires adequate angular precision and accuracy. Beyond diffusion tensor imaging (DTI), high angular resolution sampling schemes such as diffusion spectrum imaging (DSI) and q-ball imaging (QBI) were proposed to resolve crossing fibers. These schemes require hundreds of data approximately five to ten times more than DTI, offsetting...

متن کامل

Time‐efficient and flexible design of optimized multishell HARDI diffusion

PURPOSE Advanced diffusion magnetic resonance imaging benefits from collecting as much data as is feasible but is highly sensitive to subject motion and the risk of data loss increases with longer acquisition times. Our purpose was to create a maximally time-efficient and flexible diffusion acquisition capability with built-in robustness to partially acquired or interrupted scans. Our framework...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 69 6  شماره 

صفحات  -

تاریخ انتشار 2013